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Abstract. We describe an adaptive procedure that approximates a function
of many variables by a sum of (univariate) spline functions s of selected
linear combinations am • x of the coordinates

() S(am * x)
l mM m

The procedure is nonlinear in that not only the spline coefficients but
also the linear combinations are optimized for the particular problem.
The sample need not lie on a regular grid, and the approximation is affine
invariant, smooth, and lends itself to graphical interpretation. Function
values, derivatives, and integrals are inexpensive to evaluate.
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1. Introduction

Multidimensional surface approximation is recognized as an important

problem for which several methodologies have been developed. The aim is

to construct an approximation *(x) to a p-dimensional surface y= f(x) on

the basis of (possibly noisy) observations {(Yixi)1 ,in. Most existing

methods, such as tensor product splines, kernels, and thin plate splines

(for a survey, see Schumaker [1976]), are linear ir that

(x) = wiy i,

where the weights {wi} depend only on x and {x ilri-, but not on

{Yi-liin , These methods have the advantage that they are straightforward

to compute and their theory is tractable. In practice, however, they are

limited because they cannot take advantage of special properties of the

surface. Due to the inherent sparsity of high-dimensional sampling,

procedures successful in high dimensions must be adaptive and thus non-

linear.

In this paper we describe an adaptive procedure that approximates

f(x) by a sum of (univariate) spline functions sm of selected linear

combinations am x of the coordinates

*(x) = m S(am ' x). (1)

The procedure is nonlinear in that not only the spline coefficients but

also the linear combinations are optimized for the particular problem.
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2. The Algroithm

The spline function sm along am x is represented as a sum of Jm

B-splines [de Boor, 1978] of order q

Sm(am x) =Z mjBmj(am • x). (2)

The approximation (x) (given by equations (1) and (2)) is specified by

the directions {am}l !m M  the knot sequences along am • x for lmIt5M, and

the B-spline coefficients { mj}l magM'lrj5jm. For particular lam}, the

knots are placed heuristically and then the { mj} are de,.-rmined by

(linear) least squares. The residual sum of squares from this fit is

taken to be the inverse figure of merit for {amfl mnM .

Following Friedman and Stuetzle [1981], the approximation is con-

structed in a stepwise manner: given fam}Ilm M_1, find aM to optimize the

figure of merit of {aM):lmM* Terminate when the figure of merit is below

a user specified threshold.

3. .mplementation

A difficult part of the algorithm is finding each direction am. We

perform a numerical search using a Rosenbrock method [Rosenbrock, 1966].

This method is easily modifiable to search over the unit sphere. We have

found empirically that each iteration of the optimizer requires approx-

imately 3.5p function evaluations, where p is the dimension of x. Two

iterations are nearly always sufficient. As the search usually starts far

from the solution and the solution does not have to be obtained with high

precision, it does not seem likely that optimization procedures that

estimate the Hessian would do better.
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For high dimensionality, the computation is dominated by the

evaluations of the object function. Since it is not crucial to find the

precise optimum, considerable savings are achieved by substituting a

similar, but much less expensive figure of merit during the search for a

new direction. For this figure of merit not only the previously found

directions but also the corresponding spline coefficents are held fixed.

For a given direction, the residuals are modelled by (basically) a moving

average smooth [see Friedman and Stuetzle, 1981] The characteristic

bandwidth (the fraction of observations over which averaging takes place)

is taken to be inversely proportional to the number of krots. The residual

sum of squares from the smooth is the figure of merit used for the smooth.

Solving the least squares problem for the original figure of merit requires

0 rn( Z] jm2

operations, while the new figure of merit can be evaluated in roughly n

operations using updating formulas for the moving average. The least

squares problem has to be solved only once for each iteration to determine

the new model after am has been found.

To solve the least squares problem, we form the normal equations and

use a pseudo-inverse, since the design matrix might not have full rank.

The singularity which arises from the inclusion of a constant term for

each direction is remedied by simply dropping one column per direction

from the design matrix. Higher order singularities caused, for example,

by the linear terms for three co-planar directions, are not explicitly

taken care of, but are handled by the pseudo-inverse.
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Our knot placement procedui, ie motivated by the sequential nature

of the algorithm. At each iteration, the knot positions are required for

the least squares fit, after the new direction has been found. Our model

at this point is the spline fit of the previous iteration, plus the

moving average smooth along the newly found direction. The knot placement

is based on the residuals {ri} from this model. Multidimensional structure

in these residuals due to incompleteness of the model manifests itself as

high local variability in the scatterplots of r. against am x. In

order to preserve the ability of fitting this structure in further

iterations, it is important to avoid accounting for it by spurious fits

along existing directions. For this reason we place fewer knots in

regions of higher local variability. Since the residuals change, the

knots are replaced along all directions at each iteration.

The knots along a direction am are placed as follows: the smooth

described above is applied to {(ri,am.Xi)}lrir n and the local variability m

vi at e~ch point is taken to be the average squared residual from its

local linear fit. The Winsorized local variabilities are defined by

N if v i > N

w. --7 if vi <7r
tv i  otherwise

(where V l i), and then are scaled so that i w I.

n 1-ci-n

The knots {t } are placed to divide the line into intervals with equal

content of 
I

' i I
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for each t, 1 1
im q +  am.X2 E[tCt1+l] w

4. Procedure parameters

The operation of the procedure is controlled primarily by two

parameters; these are the number of knots taken along each direction and

the termination threshold. Both parameters can be adjusted using graphical

output produced by the program. The adequacy of the number of knots and

their placement can be judged by examination of the residuals from the

final model plotted against each am  x. A systematic pattern in any one

of these plots indicates that either the number of knots is too small or

that the knot placement algorithm did not perform well. Another indication

that the number of knots might be insufficient is that the procedure

chooses nearly tne same direction twice, thereby effectively doubling the

number of knots placed along that direction.

The value set for the termination threshola determines the number of

terms making up the model. Various criteria can be used to decide whether

a particular term should be included. In the case of noisy data, one can

ask whether a term is significantly different from zero (given all previous

terms), or whether the addition of the term reduces the predictive mean

squared error of the model. Also, considerations outside the data having

to do with the problem setting can influence such a decision. In order to

judge statistical significance, it is necessary to know, by how much one
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would expect an additional term to increase the figure of merit if

there were no structure in the residuals. This can be estimated with a

permutation test. The residuals (from the previous terms) are randomly

permuted among the obervations, thereby guaranteeing no structure in the

(permuted) data. MASA is applied to these residuals and the increase in

figure of merit noted. This process can be repeated, obtaining a (null)

distribution of the figure of merit. Either formal or informal

hypothesis testing techniques can then be used to judge whether the

nonpermuted figure of merit is significant.

The optimal number of terms with respect to prediction error can be

estimated by cross validation. The observations are randomly divided

into L (typically 5-10) subsamples. Each of the subsamples are in turn

set aside and the model constructed from the remaining observations.

Each observation is set aside exactly once. The mevn squared prediction

error averaged over the set aside observations is taken as an estimate of

the model mean squared error. Such as estimate can be made for models

with differing numbers of terms and that model minimizing the cross

validated mean-squared error estimate is then selected. Both permutation

tests and cross validation can be implemented in a small driver routine

which calls MASA repeatedly.

5. Examples

In this section we present and discuiss the results of applying the

Multidimensional Spline Approximation method (MASA) to four examples. (A

FORTRAN program implementing MASA is available from the authors.) The

first three examples were suggested elsewhere for testing surface
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approximation procedures. The function in the fourth example was

studied in connection with a problem in mathematical genetics.

The first example is taken from Friedman [1979]. In this example

uniformly distributed random points {xi 1 1 < i _ 200) were generated in

the six-dimensional hypercube [0,1)6. Associated with each point xi was

a surface value

Yi = 10 sin (nxi(I)xi( 2)) + 20[xi( 3)-O.5]2 + lOxi( 4) + 5xi( 5) + Oxi(6)+E i,

where the {Ei} were independent identically distributed standard normal.

The inverse figures of merit for the approximation with M = 1,...,4 terms

were 6.71, 4.29, 1.87, 0.97. In three restarts, the figure of merit did

not decrease below 0.86, so M = 4 was chosen. The four linear combinations

and the corresponding spline functions are shown in figures 1.1-1.4.

(The function value is plotted on the vertical axis, a • x on the horiz-

ontal axis. The "+" signs on the bottom of the graph indicate the knot

positions. A 'Y' sign followed by a number indicates multiple knots.)

For completeness, the program parameters are also listed; see comments in

the program source code for a detailed explanation.) The spline along the

first linear combination (figure 1.1) is seen to model the linear part

of the surface. The second term in the approximation (figure 1.2) models

the additive quadratic dependence on x(3). The final two terms (figures

1.3, 1.4) model the interaction between x(l) and x(2). The L2 norm of the

error 11f - 4L12 was 0.57.

Although the full advantages of MASA compared to other procedures
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are realized in higher dimensional or noisy settings, we applied it to

two bivariate examples used by Franke [1979] to compare a number of

interpolatory surface approximation schemes. For both examples 100

uniformly distributed random points in the unit square [0,1 2 were

generated. The function in Franke's first example is

f(x,y) = 0.75 exp[- (9x-2)2 + (gy2)2
4

+0.75 exp[- (9+I) - 9y- I

+0.5 exp[- (9x-7)2 
+ (9y-3)2 

4

+0.2 exp[-(9x-4) 2 - (9y-7) 2)

Considerations similar to those in the previous example led to an

approximation with three terms. The linear combinations and

corresponding spline functions are shown in figures 2.1-2.3.

The function in Franke's second example is

f(xy) [tanh(9y-9x) + I].

for this case the approximation used only one term, shown in figure 3.1.

Since different random points were used in Franke's and our tests,

precise comparisons are not possible. On the first example, MASA gave

roughly an order of magnitude larger errors than the best methods in

Franke's trials (global basis function methods) while on the second
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example, MASA gave an order of magnitude smaller errors than the best

methods. These results are not surprising since the peak-shaped basis

functions of the global basis methods are especially suited for

representing the peaks of the first example, whereas the ridge-shaped

basis functions of MASA are especially suited to the second example.

Unfortunately, peak-shaped basis functions are not appropriate for

moderate or higher dimensionality. The difficulty is that in order to

achieve a smooth fit, the width of the basis peaks needs to be

comparable to the distance between data points. For n uniformly distributed

random points in a p-dimensional hypercube [0,1] P, the typical nearest
neighbor distance is (1)p In particular for n = 1000 and p = 10, this

distance is 0.5, and for p = 20 is 0.7. Thus variation of the surface

over distances small compared to such large interpoint distances cannot

be well approximated with these global basis functions methods.

Our final example is a 19-dimensional function encountered by

Carmelli and Cavalli [1979]. An important question is the structure of

this function near its minimum. We sampled the function at 200 povnts

uniformly distributed in a small hypercube centered at the minimum

found by numerical optimization and applied MASA. The inverse figure of

merit for the best constant fit was 13.3. The inverse figure of merit for

M = 1 was 0.78. In 30 restarts, the figure of merit did not decrease

below 0.42. Figure 4.1 gives the linear combination and corresponding

spline function. This shows that most of the structure in the

likelihood function is revealed in this one projection. The structure

certainly would not be easy to find by just looking at the definition of
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the function, and we know of no other approximation method that would

yield this kind of information.

6. Discussion

MASA can be expected to work well to the extent that the surface can

be approximated by a function of the form (1). Of course in the limit

M - - all smooth surfaces can be represented by (1), but even for moderate

M functions of this form constitute a rich class.

As seen in the previous section, an advantage of using essentially

one-dimensional basis functions is the possibility of graphical

interpretation. The entire model can be represented by graphing

Sm(am x) against am  x and by specifying {am)lLm:M (perhaps graphically

for p = 2 or 3). Additionally the graphical output is very helpful for

setting the main procedure parameters, the number of knots along each

direction and the termination threshold. Proper termination of the

algorithm can be assured by monitoring at each iteration the plot of the

residuals from the model of the previous iteration along the newly found

direction.

The problem of sparse sampling in high dimensions is not encountered,

since MASA is fitting one-dimensional projections of the entire sample.

The sample need not lie on a regular grid, and the approximation is affine

invariant and smooth. Function values, derivatives, and integrals are

inexpensive to evaluate. In addition, since the approximation is locally

quadratic for q = 3, optimization algorithms can be expected to converge

rapidly. As only the directions, the knot positions and the B-spline
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coefficients have to be stored, MASA produces a very parsimonious

description of the surface.

References

Carl de Boor

[1978] A practical guide to splines, Springer-Verlag.

Dorit Carmelli and L L Cavalli-Sforza

[1979] The genetic origin of the Jews: a multivariate approach, Human

Biology 51, 41-61.

William S Cleveland

[1979) Robust locally weighted regression and smoothing scatterplots,

J Amer Stat Assoc 74, 829-836.

Richard Franke

[1979] A critical comparison of some methods for interpolation-of

scattered data, Naval Postgraduate School NPS-53-79-003.

Jerome H Friedman and Werner Stuetzle

[1980] Projection pursuit regression, J Amer Stat Assoc, Dec. 1981.

H H Rosenbrock

[1960) An automatic method for finding the greatest or least value of a

function, Computer J 3, 175-184.



12

Larry L Schumaker

[1976) Fitting surfaces to scattered data, In Approximation Theory,

(G G Lorentz, C K Chui, and L L Schumaker, Eds.) 111, 203-268.



13

SPLINE FUNCTION AID KNOTS ALONG DIRECTION NR 1
V .42616 0.4295 0.0416 15.73.18 0.3541 -0.0146

PLOT STATISTICS 0. 0. 0. / 0. 9. 0. / 0. 0. 0.
PROJ PRCJ
ON X ON y
AXIS , 0r., ( 09l), f0000003 AXIS

2 2 . 4 1 2 1 - - - - - - - - . . ... ...--- - --- - - - +- - - -

21.95" ****I
21.4982 I ****,
21.0.'12 I 1 0
20.5S43 I 1 0
20.1273 I 1 0
19.67('4 ! I C3
19.2134 I I 0
18.7565 I 1 0
18.299c7 I ** I 1
17.8426 + ** + 0
17.325(: i T

16.9287 T **

16.4727 I ** I 0
16.C'148 I ** 2
15.5578 I
15.1009 1 **
14.6439 *
14. 1569 3 *
13.7 30 1* 0

13.2730 + *i
12.8! I f** 1 1
1 2. 3591 T **
11.9022 I *
ii.45-52 i **
o . 9883 I I 0

2?:.537i. I ** I

9.6274 I I

9. '7,5 + + .'3.2!4.T ** 2
7. 7c' :_6  1 * I 0)

r 'b *** ,
I 0

6..2.V9 1 I 0
(J, *, I T. * I 0

4.13. 3 + + + 3+ 9
--------- ---------- -------------------- 4---------------

1 3579 4680 35791 4 F, 257913680247913%1{}24 691 57 024681 357924680
S2468] 2468:24 0?7~91 357913579135791 157913579135791357913579
.38.3338.R999999 001, 11111122 22222333 3 3 33 3 3 .1 .4 44141

figure 1.1
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SPLINE FUCTICN AND KNOTS- ALONG DIRECTION NR 2
-0. 0211 0.Q!897 0.9956 -0 .0136 0.0 0.0

PLOT STATISTICS = 0. 0. 0. / 0. 9. 0. / 0. 0. 0.
PRO2 PROJ
ON X ON Y
AXIS 30 ,, 1, 00,(Th1 0 1(31000000003 AXIS0.000r, - -- - - - - - -- -- ---- ------

-0.1612 1* 1 0
-0.3230 1* I 0
-0.4848 I** I
-3.6466 I * I 3
-Q.S !4 I ** *1 0-0.97 ... I * *

-1.132 I ** *1 0
-1.2933 I * **1 (
-1.4556 I * * i 0
-1.6174 + ** ** 0 +
-2.77921 * I 0-1.9411 I ** ** I (
-2.1029 ! * * I 0
-2. 2647 i ** ** I 0
-2.4.265 I ** * I a
-2.5893 I * ** !
-2.7501 **-2.9119. I * ** i

3.(737 I ** ** I
-3.2355 + * +
-3. 3973 I * ** I
-3.75C9 I ** * I 0
-3 4194 I ** * i 0
-.j.86 T ** ** I
-4. Q44o I ** ** I 0-4. i ** *
-4.6'918 I * ** I C3 2** *1 1 0
-5 I ** ** I 0
-477 . ** ** +

-5.0154 1 ** **
-5.1772 I ** **

-. 7 I **** *I
-**741I**"* ** I3 39244 1 * I 0

-5.93 1 ******** I 3
-6. 3099 1 {
-6.4717 +3 + +9

LEF'r
BIN ... ... ... ... ... ... ... .................LL........O9 0{O)9 IO,) 8 00 0 (,..,..

(300~3i 111222 3333444444555555 it6(67777778888889999991
1029 2.1,6i 3',0 ] 57U24579124i;R1 3l-8oil 3578024579024679147419 :3i863LS52074 2274196318530852071429641963195307529742964
3148259360471 25936o 37148259260i.71.,] 5926037048159269370481

figure 1.2
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SPLINE FUNCTICN AND IM1S ALONG DIROCTION NR 3
03.6537 0.7512 03.0251 -0.03403 0.0 0.00383

PLOTP STATISTrICS 0. 0. 0. / 0. 9. o. o (. 0. 0.
PRQJ PRO,3
ON X ON~ Y
AXIS 306100000000000,110001. (3 3.001.00(3(3000. 0(3 (3c,"O03 AXI S

2.2645 -+ ---- -------
1.9643 1 1 0
1.6641 I 1
1. 364 0 I 1* 0

1.063F. I 1 I (
0.763*7 1*** 1 0
0.4635 I 1* 0
0.1634 1 I (3
-0.1368 1* 1* **
-0.4370 1** 1* *

-0.7371 + ** ** *+ (
-1.0373 1 0* ***I (
-1.3374 I 0*I (
-1.6376 1 1 0
-1.9378 1 1* I
-2.2379 1 1 0
-2.5381 1 1 I (
-2.8382 1 1* 0
-3.!3,94 I T Y (
-3.4386. I * o

-3.-387 + ** + (3
-4.V389 I * (
-4.3390 I 1 (
-4.6292 1 ** 0
-4.9394 1 1 0
-5.2395 1 1 I 0
-5.5397I * I (

-5.83?9 T (
-61400 i 1 03

-.4~2 1 *I (
C. + 3+ 0

.4~ L 5 1(3

-7.654.,8 I **1 0
-7.3410 1 *1 o3

-311 1 *1 0
-8. %413 1 *T (3
-8. 13 -i111 1 o1

-9.74119+1 + + + 3+ 9
4--.----- - - ------------- +--------4------------

LFFr 0 0r1 ~ 000~3i0300 111111 11
BIN
ErxL.'- (3*"*I01 1122' 223332"3444 1555'5,66677777883*999990*t)0(3 1a222223

579!35902l,,46fl(33.'5791 35702468025791 3579)24A024691 35791468(324681
34-57'l91 23-4U?8 -. 1 245r(4 902:,3467801235i-70 .I 345'789123567931245'893
1470360336926925825314*71 4703703693692 582581 481470470369369259

figure 1.3
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SPLINE FUNCTION AND KNO'PS ALONG DIRECTION NR 4
-0.4506 0.8818 0.1241 -0.0169 0.069.5 0.0072

PLOT STATISTICS = 0. 0. 0. / 0. 9. 0. / 0. 0. 0.
PRa3 PROJ
ON X ON Y
AXIS 30'03000000k),101(000(0000100081O L 1 i000,10030€ 03 AXIS5.1486 -- - -- - - - - - - --- - -- - - --

5.0070 1 I 0
4.8654 1 I 0
4.7238 1 I 0
4.5822 T ** *0
4.4406 I ** I 0
4.2991 I ** I 0
4.1575 1 * ** I 0
4.0159 1 ** I 0
3.8743 I ** I 0
3.7327 + ** ** + 0
3.5911 I * *** I 0
3.4496 I ** ** 0
3.3093 I I *
3.1664 I ** I 3
3.0248 1 * ** 0
2.8832 1 ** ** 0
2.7 C. I I* I 02.6: >1 * ** I 0
2.45S5 I * I 0
2.3169 + ** ** +
2.1753 1 * ** 0

.0337 1 ** * Ii. 8 91 i * ** I 0
'.7505 1 * ** I 0
I, 6,,.0 I * 0
1.4674 I ** *1
1.3258 I * I
1.]042 T * I 01.0426 1 ** I 0,
0.9,12 + +
0.7595 I I 0
0.6179 i * I 0
0.4763 i * I 01
0. 33.17 I,* i 0
0.1931 1* I 0
0.0515 1* I 0

-1'. 0900 1* I
-i1.2326 1 I
-. 37. 2 II
-0.5148 +3 + + + 3+ 9

--------- ------------------ +- -

LEFT --- ------

B V., 222221,1001300J00 1,1000,0000000 1'. 11222233344445555666667770 0 888800

97t'31 9753197, 31 ,'.e'21 S224(68024182468246802466682 16802468
44444 +' 333333 33'66677777777777777788888888888888899999999999
3321 10'j9Sh7'7478&,.l]1 223445667889001122344566789901 1233'5567

figure 1.4
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MULTIDIMENSIONAL. ADDITIVE SPLINE APPROXIMATION (4/19/80)
PARAMETERS FOR THIS RUN
NOBS 200
NPRED 6
MODE 2
MAXTRY 4
MAXPRO 7
PPCONV .150000
MAXIT 4
KORDER 3
MAXKNO 9
BANFAC 2.000f.0
IPRINT 2
NPRINT I
PLXYORM .0
AVERAGE SQUARED RESIDUAL AROUNTD THE MEAN 26.7495
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SPLINE FUNCTION AND KNOTS ALONG DIRE ON NR 1
0.6398 0.7685

PLOT STATISTICS = 0. 0. 0. / 1 i. 0. / 0. 0. 0.
PN c PRQJ
ON X ON Y
AXIS 30000000'0"00 0 l)00100000000010010 0001000030 0100000003 AXIS0.4576 --- - --- - - - - - - --- - - -

0.4447 I***** I 0
0.4318 **i 0
0.4198 I I 0
0.4059 I I 0
0.3L%29 1 I 0
0.3800 I I 0
0.3670 i ** I 0
0.3541 1 I 0
0.3412 I 0
0.32S + + (I
0.3153 I I 0
0.3523 I ** I 0
0.2894 1 I 0
O. 27G5 I * I 
0. 2135 I "* I 0
0. * I 0
0.2376 1 I C
0. 2217 I I 0.1i7 ** I 0
,j. + * + 0
V7. 9 i) I 0o . i 7291 - 1 I
0.i ;' 1 1* 1 0O.I'; t * I 0

* I 0
0.12i I * I

V. ,?2 3 1

. '5 i **I
. 231** I 0

1. 1h9 ****

,. 04 35*I 0
0. '3 I ** *I 0ft."9 +17t ** * * 4 **** (

- T.***3* ** * I C

-0!. 31 ** I

-0.t)0; +3 + + + + 3+ i
- . . . . . . ........ ..+ + 3

PI IN ..

E D- F' 1111]2222?3"31333144i,','45555566~6Gfl7777888P99999(PC(70011111122
1; 791 3,7.' 34'852468(024579135791346802468e0245791 3
00987M54 32 y*876( 54 3 2.10Irg937G54321 10l987654 321 09877654 321 0)98765

) 9001223445(,,78z")(I01?2344556778990 1123345567/789901 12334556778

figure 2.1
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SPLINE FUNCTION AND KNJOTS ALONG DIRECTION NR 2
-0.1465 0.9892

PLOT STATISTICS = 0. 0. 04. / 0. 11. 0. / 0. 0. 0.
PROJ PnW
ON X ON Y
AXIS 3000003 W(OOO 0.00{ (Kt }.) )0(010000001 000 00,1 ,3o0 ,00001 00,0003 AXIS

0.4584 4 ------ -- ------------- ---------------
0.4454 I I 0
0.4325 I 4 ** I 0
0.4195 I 1, 0
0.4066 I * *
0.3936 I ** 1, I 0
0. 3307 I 4 * I 0
0. 3677 I ** I 0
0.3548 I ,4 w I 0
0.3413 I * ** I 0
0. 3283, + 4* • + 0
0.3159 , * I 0
0. 30129 i ** ** I 00.29 40 I * t I 0
0. 2770 ** * 004.;241 I 4 * I 0
0. 2521 I * ** I o,
0,. 23 i ** * I 0
,.225k 1 * * 1 0

0.2123 I 4 **I
0.1993 + * + o
V. 1F63 I *0
0.1734 I , ** I 0
0.1(.'4 1 *I
0.1475 I 1 ** I 0
0.1345 I * I 0
0.1216 * ** I 0
0..1086 I * 0I
0.0,957 1 * ,, 00.;$2%7 I ** **** I 0
o6.06463 + * *** + 0
0.0548 1 * *, I  0
0.0439 I** ** ***1 0
0. 309 1* ** ** I 0
.. ;179 1* 4, * 0

.O50 1* * ** I 0
-0...'3 ( 1* ,,0 ,4, I
-. 3..'209 I I 0
-0. 0 33 1 I 0
-0. '468 1 I 0
-1. 0598 +3 ++ + + + 3+ 11

- --- - -- - - - - - -f- - - - - - -. -- --- - - -- - -

754.. 4 , d91 35, .. 3W ; 34., .801 " 3>7 i02457912.161 9135080235
792:1/,2_.* 53: ,30:1'0V 30 ', 31853,03 S3. 30M0,05 3(!q5 318631P1363186
2723249449.95,'tE.'51 G61 I62727272P 3893 3i 49.1949505,5A(5161616272

figure 2.2
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NR 3
0.9997 0.0259

PLOT STATISTICS = 0. 0. 0. / 0. 11. 0. / 0. 0. 0.
PRW PRCC
ON X ON Y
AXIS 30003)(1001 00000002 ,000100000 100000100100 S( 00)0 3 AXIS0t.2831 - --- -- -- - -+-- - - - -- - - -

0.2723 1 I 0
(). 261t ** ** I 0
0.25) 1 ** I 0(. 2:02 I * * I 03

0.2295 1 1 0.2187 I * * I 0
0.2",ai i ** ** ,
0.1973 I * *
0.1866 I * I 0
0.1759 + * + 0
0.1651 1 ** I 0
.1544 I * * 0

0.1437 I * I 0
0.133 ,  I I I
0.1223 I * I 0
0.1115 I * * I I

0.W9") I * * I C

0(.079! * * 1 0
0.0687 + ** + 0
.581 * * ***** *** I 0

0.0472 I * ** ***** I 0
0. 0 365 1 ** **** ** I 0
0.0758 1* ** I 0
0.0151 I * I ,
0.41('41 1* ** 1 0

-1. 1* ** I 0
-_.0171 T * 0
-0. (3278 1 ** I )
-0.0385 + ** + 0
-0.0.192 1 * i ,
-0.0601) ** I 0

-0.0.7 I * I 0
OP 2 ~4 1 *

-0. 0921 I **I
-J. 1029 I *I 0-;.1 ¢ I *1
-. 14 ;1 I 0
-0.!35:1 1 1 0
-. 1457+ + + + 31 11

--------- ---------- -----------------------------
B! ... .. . ............ .. .. .. .. .. .. .. ..

LXE 400,00111iI 1 ?K
13479124679] 24,791 24',79] 246791 2467912467124679124679124679
30(239639629629_ 295 ';i,851851q4184174174074073073.173063063
3.062S4to62340 639Y, I 7395:7 395284062840628417395173951'/306284062

figure 2.3
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MULTIDIMENSIONA. ADITIVE SPLINE APPROXIMATION (4/'19/?0)
PARAMETERS FOR THIS RUN
NOBS 100
NPRED 2
MODE 2
MAXTRY 2
MAXPRO I
PPCO V .15(,0,L
fMAXI T 2
KORDER 3
MAX)I4O 11
BANFAC 1.6D00
IPRINT 3
NPRINrr 1
P LCITRY .(3
AVERAGE SQUARED RESIDJAL AROUND THE MFAN .109703
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SPLINE FUNCTION AND KNOTS ALONG DIRECTION NI 1
0.7083 -0.704

PLOT STATISTICS V.. 0. 0. / 0. 30. 0. / 0. 0. 0.
PROJ PROJ
ONX ON Y
AXIS 30000 101 10000101011110101030311110010010]00001000010003 AXIS

0.2223 -------------- -
P. 2161 I 0,. 218i I ** I o]
0.2039 1 ** I 0
0-.978 i I 0
01917 1 ** I 0
0.1856 I * I 0
0.1795 I ** 0 0
0.1734 I *0
0.1672 I * I 8
0.1611 + ** + 0
0.155, I * I
0.1489 i* I 0
0.!429 I * I 0
0.1367 1 * I
0. 13"6 i ** I 0
0.1245 I I 08. I183 I * I 0
0.112 I * I 

O.1i I *"I 0
i..000 + + P)
O. 8939 I * I v
0.0878 I * I 0
0.0,817 1 * I 88. 2756 I ** I
.r95 * I 0

P. 633* I 
0.5 I I 8
0. I 5 11

,. , II C;1. 031 10;. 02767 1
0'. 1 '176 ! *

-].'.; I *:*I C
0. ." i I1I 0

'212 +3 ++ + + + + 3 3+-+++ + + + + + 3+ 30

LEFT----+----------+--------+--------------.-----

555544.743 332222111000000000l1111 222223333344445555
3197531975319742[,8f;420864207531 1i246r024r,q13579135791368 12468
9987r654337.18 7'C41321 09887345567 8910] 123.14Gr,(7Wl.)8.8,12334

35H(i358 35:J 58 3. 75 3 , 5f186318631 3.6

figure 3.1
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80)PARAILT'ERS FOR THIS RUN
NOBS 100
NPRED 2
MODE 2
MAXTRY 2
MAXPRO 1
PMCOV .150000
MAXIT 4
KORDER 3
MAXKNO 30
BANFAC .80,000
IPRINT 3
NPRINT 1
PLCITh .0
AVERAGE SQUARED RESIDUAL A-ROuND THE MEAN .9 7 2118E-02

-
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SPLINE FUNCTION AJD rOCrlY ALOW; DIRECTION NR 1
-0.25 0.L 0.7222 -0.2242 -0.3383 -0.5495 0. 351-0. 0242 0.0 0. r,5 5n' -1.. (3R4 -0.04141 0.0 0.0

0.0 -0.0039 -'J.0660 -0.0153 -0.0235

PLOT S-ATI.TICS = 0. 0. 0. / 0. 11. . / 0. 0. 0.
pRaj
ONX v

29.8919 -- --------- ---- --- -- --------------------------29 .61 GA * I**

29. S94 1* *** ** I 
29.136- 1* **
28.854 I ** 
28.6331 * ** **
29.383 ** * * I
28.1295 ** *A* ** 
27.8778 1 ** * * -

27. 62C-0 I **A* * I 2
27 3T43 + ** +
27.122 1 *
26.q7.7 I **

2 2. 37 i *m

2 0

24., I25 :] - ** I 0
24.0C- * +

2 I *
2'f2. 2i 1*2...: ! ** I 0

"I,

..... 2, 7.. I P

2sJ2. .:' I ** I "

. ' 37I* * *** I 0
,..-** I 03

21. 0JR *

2;.:7:,] i * * * 0

20 7- 9 T I
7"

21.e,-1 , 54+ ]

.- .........----..... .. 4---... ....---.. .......-
LEP-'
F I N !111111 11~' l]]l llll,,111 0 ... ,,h 0 .. d 0 ........ C

211 C9:v '77.;(K 44 3221i ,C9988773 ,5,443322 ,..l)?7 ,,6,554,

2728 19.,9 63, , ,27273p38494951 5f;2 61727:,s .9,19505oQG 6172
2-70'5835d7:35" 3i;01 3(-8! 36814691469l 4 j2,79 ,79257, 2)7,,257( 3

figure 4.1
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MULTTDlhENSIOKNL ADDITIVE SPLINE' APPROXMjTION (4/!9/ -,;,
PARAM:ThFRS FCP THIS RUN
NOBS20
NPRED 1
MO1Y,
MrXRy 2

mpXPR-2 2
Prlcolw.5v0
MAX I - 2
KORDER 4
MAXK'No 11

PLC'Tli , . LSDAAVERAGE SCUAPF ' T'..AfGNTE.tL>
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